# 字典、集合与哈希表
# 前言
不同于其他数据结构,字典和集合的内部结构都是一张哈希表。
对于字典而言,这张表存储了哈希值(hash)、键和值这 3 个元素。
而对集合来说,区别就是哈希表内没有键和值的配对,只有单一的元素了。
# 哈希表结构的变化
老版本 Python 的哈希表结构如下所示:
--+-------------------------------+
| 哈希值(hash) 键(key) 值(value)
--+-------------------------------+
0 | hash0 key0 value0
--+-------------------------------+
1 | hash1 key1 value1
--+-------------------------------+
2 | hash2 key2 value2
--+-------------------------------+
. | ...
__+_______________________________+
不难想象,随着哈希表的扩张,它会变得越来越稀疏。例如这样一个字典:
{'name': 'mike', 'dob': '1999-01-01', 'gender': 'male'}
那么它会存储为类似下面的形式,这样的设计结构显然非常浪费存储空间:
entries = [
['--', '--', '--']
[-230273521, 'dob', '1999-01-01'],
['--', '--', '--'],
['--', '--', '--'],
[1231236123, 'name', 'mike'],
['--', '--', '--'],
[9371539127, 'gender', 'male']
]
为了提高存储空间的利用率,现在的哈希表除了字典本身的结构,会把索引和哈希值、键、值单独分开:
Indices
----------------------------------------------------
None | index | None | None | index | None | index ...
----------------------------------------------------
Entries
--------------------
hash0 key0 value0
---------------------
hash1 key1 value1
---------------------
hash2 key2 value2
---------------------
...
---------------------
那么,刚刚的这个例子,在新的哈希表结构下的存储形式,就会变成下面这样:
indices = [None, 1, None, None, 0, None, 2]
entries = [
[1231236123, 'name', 'mike'],
[-230273521, 'dob', '1999-01-01'],
[9371539127, 'gender', 'male']
]
我们可以很清晰地看到,空间利用率得到很大的提高。